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for the greater strength of the C-O bond in CO than in 
CO2 or SCO, since a charge, being concentrated along 
the molecular axis, exerts a greater attractive force 
upon the two nuclei. Nevertheless, the near-equality 
of the total internuclear valence electronic charges em­
phasizes the artificiality of the characterization of these 
C-O bonds as "double" or "triple" bonds. 

It has been suggested that the electronic structure of a 
bond C-Z in a triatomic molecule X-C-Z is relatively 
little affected by the nature of the atom X.6'29 Some 
support for this idea, at least in the case of CO2 and 
SCO, is provided by the fact that the quantities of <r and 
7T electronic charge in the CO portions of these two 
molecules are so very similar. There are, of course, 
certain differences in detail between the electronic struc­
tures of the C-O bonds in CO2 and SCO.28 

It has been noted28 that there is no localized buildup 
of electronic charge to the outside of the sulfur atom in 
SCO; apparently the sulfur has nothing resembling a 
"lone pair," in marked contrast to the oxygen atoms in 
CO, CO2, and SCO.28 Another indication of this fact 
can now be obtained by computing the positions of the 
centers of the electronic charges associated with the 
sulfur and oxygen atoms in these molecules. It has 
been shown that the centers of charge of the covalently 

(29) W. J. Orville-Thomas, "The Structure of Small Molecules," 
Elsevier, Amsterdam, 1966. 

Although the most important manifestations of 
i- hydrogen bonding, such as the anomalous prop­

erties of certain solids and liquids, the conformation of 
proteins and solvation effects in some chemical reac­
tions, involve semiinfinite aggregates of interacting 
molecules, theoretical investigations1-6 of this effect 
have heretofore been largely limited to the study of 
dimers or trimers. These studies are clearly useful 
only in so far as the hydrogen-bonding interactions 
within these systems can be represented by the sum of 
pairwise potentials, and the long-range crystal or sol­
vent interactions are negligible. In the present paper 
we consider these questions by departing from the 
traditional dimer approach to the study of hydrogen 

(1) S. Bratoz, Adcan. Quant. Chem., 3, 309 (1967). 
(2) B. Pullman, Theor. Chem. Acta, 10, 461 (1968). 
(3) K. Morokuma and L. Pederson, J. Chem. Phys., 48, 3275 (1968). 
(4) P. A. Kollman and L. C. Allen, ibid., 52, 5085 (1970). 
(5) P. N. Noble and R. N. Kortzeborn, ibid., 62, 5375 (1970). 
(6) D. Harkins, J. W. Moscowitz, and F. H. Stillinger, Chem. Phys. 

Lett., 4, 527 (1970). 

bonded atoms in a series of diatomic molecules are gen­
erally to the outsides of the atoms, rather than in the 
internuclear regions.230 These results can, in most 
cases, be attributed to the effects of fairly localized 
molecular orbitals representing what may loosely be 
termed "lone pairs." The center of electronic charge 
of the sulfur atom in SCO, however, is only 0.01 au 
to the outside of the S-C internuclear region; the corre­
sponding figures for the oxygen atoms in CO, SCO, and 
CO2, on the other hand, are 0.06, 0.07, and 0.17 au, 
respectively. These indications that there is not as­
sociated with the sulfur in SCO any buildup of elec­
tronic charge which could be described as a lone pair are 
consistent with Bird and Townes' conclusion, based 
on the measured 33S quadrupole coupling constant, 
that this sulfur atom is in an essentially unhybridized 
state.3 ' 
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bonding, and consider instead the interactions within 
an infinite lattice of hydrogen-bonded molecules. 

Hexagonal ice, the stable form of ice under ordinary 
conditions, was chosen as the subject for this study 
since it provides an intermediate step to the under­
standing of the properties of liquid water and its solu­
tions. Thus, if the present investigation shows that 
molecular orbital theory adequately describes the inter-
molecular hydrogen-bonding interaction within the ice 
lattice, it would suggest that the present treatment 
could be usefully extended to the study of solvation in 
aqueous solution. Such a study would aid the under­
standing of, for example, the role of solvation molecules 
in organic chemical reactions. 

The structure of hexagonal ice (ice-Ih) has, of course, 
an intrinsic interest of its own. Although the main 
features of the lattice structure are fairly well under­
stood, several questions concerning the observed small 
asymmetry of the oxygen sublattice (see below) remain 
to be resolved.7'8 The structure of the water molecule 
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in the ice-Ih lattice is also of interest. Neutron diffrac­
tion9 and broad line nmr10 studies have revealed an in­
crease, over gas-phase values, of about 5° in the HOH 
bond angle and about 0.01 A in OH bond length. 

Theoretical Section 

The LCAO-MO calculations reported here for the 
ice-Ih crystal are based on the CNDO/211 (complete 
neglect of differential overlap) approximate molecular 
orbital scheme. The basis set for these calculations 
consists of the conventional valence shell set of Is or­
bitals centered on the protons and Slater 2s, 2pz, 2p„, 
and 2pz atomic orbitals, referred to as the a, b', and c 
crystal axes, centered on the oxygen atoms of the lattice. 

The conventional method12 for molecular orbital cal­
culations for crystals is based on the use of lattice trans-
lational symmetry to factorize the infinite dimension 
SCF matrix equation in much the same way as point 
group symmetry is used to simplify molecular calcula­
tions. The first step in this procedure involves the con­
struction of delocalized crystal orbitals from transla-
tionally equivalent localized atomic orbital basis func­
tions. With these new basis functions, the infinite di­
mension Fock matrix for the crystal breaks down into 
an infinite number of coupled finite matrix equations. 
As only a finite number of these equations can be 
solved, the infinite aspect of the crystal is simulated by 
averaging over the solutions of the chosen equations by 
means of numerical interpolation. 

While the above approach is suitable for molecular 
orbital calculations for metals, it is wasteful when 
applied to molecular crystals where the electrons are 
localized. Such a molecular crystal calculation would 
consume a considerable amount of computer time first 
constructing delocalized crystal orbitals and then more 
time localizing them again through the solution of the 
SCF submatrix equations. Clearly, an alternative 
theoretical approach that takes advantage of the special 
properties of molecular (and valence) crystals is re­
quired. 

An alternative method for molecular orbital calcula­
tions for molecular crystals was recently proposed by 
Bacon and Santry.13'14 This method starts with molec­
ular orbitals localized on the constituent lattice mole­
cules and treats the derealization over surrounding 
lattice molecules by a technique based on third-order 
SCF perturbation theory. The serious disadvantages of 
the crystal orbital (Bloch) method are avoided by work­
ing with the crystal bond order matrix throughout and by 
using the crystal symmetry in a simple and direct 
manner. The use of perturbation theory of course 
raises the question of accuracy. However, in the pres­
ent application, three-dimensional crystals, the 
error13-14 resulting from the neglect of fourth and higher 
order terms in the perturbation expansion probably 
compares favorably with that inherent in the numerical 
interpolation necessary in the crystal orbital approach.12 

As the SCF perturbation method has been described 
in detail elsewhere, we shall limit the present discussion 

(7) K. Lonsdale, Proc. Roy. Soc, Ser. A, 247, 424 (1958). 
(8) R. Brill and A. Tippe, Acta Crvstallogr., 23, 343 (1967). 
(9) S. W. Peterson and H. A. Levy, ibid., 10, 70 (1957). 
(10) D. E. Barnaal and J. J. Lowe, J. Chem. Phys., 46, 4800 (1967). 
(11) J. A. Pople and G. A. Segal, ibid., 44, 3289 (1966). 
(12) S. O'Shea and D. P. Santry, ibid., 54, 2667 (1971). 
(13) J. Bacon and D. P. Santry, ibid., 55, 3743 (1971). 
(14) J. Bacon and D. P. Santry, ibid., 56, 2011 (1972). 

to the salient features of the first-order theory. We 
start with the infinite SCF matrix equation for the crys­
tal 

FC = CE (1) 

where F, C, and E are respectively the crystal Fock, 
molecular orbital, and orbital energy matrices, re­
ferred to a basis set of atomic orbitals centered on the 
atoms of the constituent lattice molecules. For con­
venience of exposition, it will be assumed that this basis 
set is organized so all atomic orbitals associated with a 
given molecule are collected together in a group. 
Intuitively following the molecular character of molec­
ular crystals, the molecular orbitals of hypothetically 
noninteracting lattice molecules are taken to be zero-
order approximate solutions to eq 1. These zero-order 
solutions satisfy the zero-order SCF equation1314 

pw£W) — c{mEw) (2) 

where, because of the basis set convention, Fw will be a 
block diagonal matrix, with each diagonal submatrix, 
RRf(0), being the Fock matrix for a hypothetically 
isolated lattice molecule, R. Similarly, C(0) can be 
assumed to be a block diagonal matrix, with each di­
agonal submatrix, RRC<0), containing the molecular 
orbitals, both occupied and vacant, of a particular lat­
tice molecule. 

All interactions between all molecules in the crystal 
are now included as a single perturbation. Their in­
clusion is effected through the solution of the first-
(and higher) order SCF perturbation equation1314 for 
the crystal 

fmcn) + /-U)C(O) = c(0)£(1» + C(1)£(0) (3) 

where F (1), C(1), and £ (1) are the first-order Fock, 
molecular orbital, and orbital energy matrices, respec­
tively, for the crystal. The first step in the solution of 
this equation is the partitioning of all matrices into 
inter- and intramolecular submatrices using the special 
ordering of the basis set. The following notation is 
introduced for the elements of these submatrices. 

RSf(I) = (Rafae l ) ) (4) 

Rscci) = (RSCM/«) (5) 

and for the crystal bond order matrix P 

RSfU) - (RSf ^U)) (6) 

where p. and v label atomic orbitals associated with the 
Rth and Sth lattice molecule, respectively, and i labels 
a molecular orbital localized on the Sth molecule to the 
zeroth order. Explicit expressions for the various 
RSf(D a r e g i v e n Jn ref 14. Equation 3 can now be 
partially multiplied out in terms of these submatrices. 
Noting the block diagonal form of F{0) and C(0) we find 

RRf(O)RRCU) 4 . RRfU)RRC'0 ' = R R C ( 1 ) R R £ t 0 ) + 

RRC<0)RR£(D (7) 

and 

RRf(O)RSCU) 4- RSf(l)SSC<0) = RSCU)SSf(O) (8) 

R ^ S 

Thus, the infinite dimension perturbation equation, 
(3), has been broken down into a infinite number of 
finite dimension equations. These equations are 
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termed intramolecular if they are of the same type as 
(7) and intermolecular if the same type as (8). There is 
one intramolecular equation for each lattice molecule 
in the crystal and two intermolecular (RS and SR) 
equations for each pair of molecules. These equations 
cannot be solved independently since to set up and 
solve the intramolecular equation for a given mole­
cule14 one requires the charge distributions, or solu­
tions to the intramolecular equations, for all other 
molecules in the lattice. 

At this point the new theory appears no less compli­
cated than the one it is intended to replace. However, 
no use has, as yet, been made of the crystal symmetry. 
If it is assumed, to simplify the discussion, that all 
molecules in the crystal are related by one or more 
elements of the space group, then the intramolecular 
Fock and bond-order submatrices for all lattice mole­
cules are related. If two molecules are translationally 
equivalent, their Fock and bond-order submatrices will 
be equal. If, on the other hand, the two molecules 
are related by an element of rotational symmetry, their 
submatrices will be related by a similarity transforma­
tion. This fact can be used to decouple the above 
equations since the solution of the equation for a given 
molecule can be used to calculate the charge distribu­
tions for all other lattice molecules. Furthermore, 
since all molecules in the lattice are equivalent, it is 
necessary to solve only one representative intramolec­
ular equation and only one set of intermolecular equa­
tions involving a chosen reference molecule with all re­
maining lattice molecules. In practice (see later), it is 
usually sufficient to solve only equations involving 
molecules up to the next nearest neighbor. Thus, a 
solution to eq 1 can be achieved through the solution of 
a few matrix equations, (7) and (8), of the same dimen­
sionality as the SCF equation for the constituent lattice 
molecules. In the present treatment, the perturbation 
expansion is taken up to and including the third order. 

In the case of CNDO/2 theory, the coupling of the 
intramolecular equations is particularly simple since it 
involves only the total atomic electron populations for 
the lattice molecules.14 Thus, the equations are de­
coupled by simply noting that the total electron pop­
ulation for a given atom is the same for all molecules. 

A detailed description of the solution of the pertur­
bation equations is given in ref 13 and 14. Although 
the equations must be solved iteratively, since F{1) de­
pends on C(1) through P{1), the computing time re­
quired is relatively short since the method of solution 
depends on multiple matrix multiplication rather than 
matrix diagonalization. The higher order perturba­
tion equations are solved in an analogous manner. 
Iteration of the higher order equations is of course 
necessary since an nth order change in C effects a cor­
responding change in P and hence in F. 

The computational efficiency of the method is such 
that the time required for a calculation for a three-
dimensional crystal is about the same as that required 
for a direct calculation on the corresponding dimer. 
Thus, the perturbation approach enables calculations 
on extremely large and complex systems to be carried 
through on relatively modest computational facilities. 

The Crystal Energy 
In practice the perturbation equations are solved for 

the bond-order matrices RSP<"> in preference to the 

molecular orbital matrices RSC (n). These bond-order 
matrices are then used to calculate the crystal energy by 
means of eq 9, where H and F are respectively the total 

Xstal Xstal 

w = 1A E E PMXH11, + F11,) + 

nuclear repulsion (9) 

Hamiltonian and Fock matrices for the crystal.14 The 
summations over JJ, and v include all the atomic orbitals 
in the crystal basis set. When the crystal P, H, and F 
matrices are expanded in the perturbation series1314 

and expressed in terms of the corresponding sub-
matrices, it is found that the crystal energy (per mole­
cule), Wxstai, can be most conveniently written as the 
sum of five contributions.14 

f̂ Xstal = ' 'molecule "T ' 'electrostatic T" ' 'polar iza t ion "T* 

W intermolecular \ " intramolecu lar (10) 

Ŵ moiecuie in eq 10 corresponds to the zero-order energy 
and is the energy of the reference molecule, including 
nuclear repulsion, calculated at the molecular geometry 
appropriate for the crystal. As this geometry will 
usually differ slightly from that for a free molecule, 
l̂ moiecuie will not, in general, equal the free molecule 
energy J^f

moiecuie. This difference reflects the fact that 
the crystal molecule is usually in a state of some internal 
strain. We allow for this by defining the crystal 
binding energy as 

^ b i n d i n g = W'xstal — Wfmolecule ( H ) 

where Poinding will be negative for stable crystals. 
The strain energy for a molecule in the lattice, which 
may be of some interest, is given by 

' ' s t r a i n = ' 'molecule \ W intramolecular - W < 
molecule 

(12) 

Electrostatic is given by 
any molecule 

^electrostat ic = V2 E E ( G - ' 0 W " ~ 
a /5 

2QamZfi)Tafi+
 1 A E E Z a Z 8 E ' l / R a w . (13) 

a/3 S 

where Q^0) is the total zero-order electron density on the 
(3th atom of, say, the reference molecule R, and Zg the 
effective nuclear charge of the same atom. Tap is a 
lattice sum of CNDO Coulomb integrals 

Xstal 

Ta, = E ' 7 c 3
R S (14) 

S 

where 7a0
RS is the average Coulomb integral between 

the ath atom of the reference molecule R, and the /3th 
atom of the Sth molecule in the lattice. The summa­
tion over S excludes the origin or reference molecule R. 
Both contributions to !̂ electrostatic in eq 6 are strongly 
divergent, but their combined sum is reasonably con­
vergent for a three-dimensional crystal. 

While the various terms in eq 13 clearly represent an 
electrostatic interaction between the unperturbed 
charges centered on the atoms of the lattice molecules, 
the neglect of penetration15 in the CNDO/2 method 
leads to a positive value for this contribution for all the 
hydrogen-bonded molecular crystals studied so far 
(HF, H2O, HCN, HCOOH, HCONH2, (NH2)2CO, and 

(15) J. Pople and D . Beveridge, "Approximate Molecular Orbital 
Theory," McGraw-Hill, New York, N. Y., 1971. 
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Qi-(COOH)2).
14'16 As this neglect of penetration sup­

posedly partially compensates for the neglect of the 
overlap, ^electrostatic may be considered to include 
part of the overlap dependent repulsive energy for the 
crystal. Wpoi arization is given by 

p̂.u,i»ti<,n = 1AEE(Ga10W1' + Ga(1W" + 
a/3 

G« ( OW2 ) + e* ( l w 2 ) + Q«{2)Q^} + 
e a

( o w s , ) i v + 1AEE(C-'" + QaC2)) x 
a/9 

(2,™ - 2Zp)T0, (15) 

and includes all remaining terms in the crystal energy 
explicitly dependent on the Coulomb lattice sums Ta$. 
At the simplest level this contribution gives the electro­
static interaction between the perturbed charge den­
sities of the lattice molecules. The neglect of penetra­
tion, however, complicates this interpretation. 

The intermolecular energy, intermolecular, includes 
all terms that involve the lattice summation of the inter­
molecular density submatrices, RSP 

Xstal R S 

^ i n t e r m o d u l a r = V * E E E ^ ^ V " + 
S n v 

R S / y 2 ) )R S / ^( i , _ i / ^ s / y i ) x 

(*8/V» + 2*8iV»h«uRB] (16) 

where RSH{1) is an intermolecular Hamiltonian sub-
matrix.1314 A large fraction of the time required for 
the crystal calculation goes into the evaluation of this 
contribution, since each term requires separate SCF 
perturbation calculations. Fortunately, RSP decreases 
very strongly as the separation between the molecules R 
and S increases, so relatively few terms need be included. 

Finally, întramolecular includes all contributions to 
the crystal energy involving elements of the intramolecu­
lar submatrices, RRP, RnH, and RR.F, for the reference 
molecule R. 

întramolecular = 1 A E E ( G a 0 W " + 2QaWQf,W + 
a/3 

2 G a ( 1 W 2 ) + 2 g Q < ° W 3 ' h ^ R R + 

EEK 1 1 1 1 JV" + R R /V 3 ) ) R R *V 0 ) -

1/YRRp (I)RRp (1) _L 2 R R P ( 2 ) R R J P (O) -\-

2 R R p ^ ( D R R / y 2 ) + 2RR/>Mi/C0)RRPM(,(3))7a^R] (17) 

This term gives the intramolecular interaction for the 
polarized charge distributions of the lattice molecules. 
As might be expected from the variational theorem, the 
first-order charge in the intramolecular energy is zero, 
so all terms in eq 17 are of second or higher order. 

Expressions 13-16 suggest that, at the present level of 
approximation, the crystal energy can be represented by 
a lattice sum of terms that involve no more than two 
molecules at a time, i.e., sums of pair potentials. How­
ever, the crystal density submatrices included in these 
equations are obtained as the iterative solutions to the 
SCF crystal perturbation equations and are, therefore, 
complicated implicit functions of the Coulomb lattice 
sums as well as other interaction parameters. Thus, 
all of these crystal matrices are implicit functions of all 
of the interactions within the lattice, and the deceptively 

(16) J. Larkindale and D. P. Santry, to be submitted for publication. 

simple energy expressions that depend on them, in fact, 
include complicated multicenter interactions. 

Computational Details 

The oxygen atoms of ice-Ih form a tetramolecular 
hexagonal sublattice of symmetry -P63/mmc.17 The 
four atoms in the unit cell occupy the special positions 
(4f)17 with coordinates ±(V., Va, u; 2/3,

 1A, u + 1A), 
where u is the c coordinate of the first or reference 
oxygen atom, 1. This quantity is in principle com­
pletely arbitrary since no special value is required for 
the space-group symmetry P63/mmc. However, for a 
regular tetrahedral sublattice of oxygen atoms, certain 
restrictions must be placed on u and, in addition, on the 
unit cell dimensions a0, b0 { = a0), and c0. The equality 
of all four nearest neighbor O-O distances requires 

w = 1A - (a0/c0y/6 (18) 

For all angles to be tetrahedral 

M = Vu (19) 

Thus, for a tetrahedral lattice, both conditions must 
hold and, therefore 

a0 = V03T5c0 (20) 

The observed ice-Ih crystal structure data conform 
rather closely to these requirements, although there is a 
small, yet significant, deviation that appears to persist 
even at low temperatures.8 

For the purpose of the present calculations, we 
smooth out the small observed asymmetries by setting 
u = Vie and calculating a0, and hence b0, from Co using 
eq20. 

The position of the protons in the ice-lh lattice is not 
well established, but it is clear that the water molecules 
are intact and randomly oriented. Neutron diffrac­
tion9 and broad line nmr10 experiments suggest the 
HOH bond angle of a water molecule in ice-lh is in­
creased, from the gas-phase value of 104°, to a value of 
about 109° so that each proton lies approximately on a 
nearest neighbor O- • O direction. There is also evi­
dence10 for a slight increase in OH bond length for 
H2O in ice-lh. 

As the present theory specifically neglects thermal 
effects, it is necessary to carry through the calculations on 
some hypothetical ice-lh structure in which the protons 
are frozen to give an ordered arrangement. The 
proton assignment chosen for this purpose is shown in 
Figure 1. It can be seen from this figure that the inclu­
sion of the protons in the frozen structure in this manner 
lowers the overall symmetry of the crystal, so that the 
four unit cell molecules are no longer crystallographi-
cally equivalent as required by the present version of the 
theory.14 The application of the theory under these 
circumstances assumes a single average charge distri­
bution for all four molecules in the unit cell. The 
difference in the charge densities of the two protons of 
molecule 1 (Table III) probably gives some measure of 
the error incurred. 

The dimensions of the water molecules in the lattice 
were determined by calculating the crystal energy, 
Crystal, as a function of d and r0n shown in Figure 2. 

(17) R. W. G. Wykoff, "Crystal Structures," Vol. 1, Wiley, New York, 
N. Y„ 1963. 
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Table I. List of Molecules and Contributions, WAHW and WAB(3\ Explicitly Included in the Calculation of m̂termoiecuiar 

Molecule 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Unit cell, 
in units of 

Go, b0, and C0 

000 
100 
100 
110 
110 
110 
110 
000 
010 
100 
101 
101 
001 
000 
100 
100 
110 
010 
010 
110 
001 
101 
101 
111 
011 
011 
111 
000 
010 
100 

Unit cell 
site" 

I 
I 
I 
I 
I 
I 
I 
II 
II 
II 
II 
II 
II 
III 
III 
III 
III 
III 
III 
III 
III 
III 
III 
III 
III 
III 
III 
IV 
IV 
IV 

Shortest 
intermolecular 

interatomic 
distance, A 

3.7 
3.7 
3.7 
4.6 
4.6 
3.7 
3.7 
3.7 
3.7 
7.3 
3.7 
3.7 
1.7 
4.8 
4.8 
4.8 
4.8 
4.8 
4.8 
4.4 
6.3 
5.6 
6.3 
5.6 
5.6 
5.6 
1.7 
1.7 
1.7 

Second- and third-order contributions to Winwmoiecuiar, 
kcal/mol 

| ^ A B < 2 > | 

6.8 X KT3 

6.8 X 10~3 

6.8 X 10-3 

7.7 X 10"4 

7.7 X 10"4 

6.8 X 10"3 

6.8 X 10-3 

6.8 X 10"3 

1.1 X 10-1 

<io-« 
1.1 X 10-' 
6.8 X 10-3 

1.6 
6.3 X 10~6 

8.9 X 10-" 
6.3 X 10~6 

6.3 X 10-" 
6.3 X 10-* 
8.9 X 10"4 

1.6 X 10"3 

<10~« 
6.9 X 10-5 

<10"e 

<10"6 

6.3 X 10-« 
6.9 X 10-s 

1.6 
1.6 
1.6 

|WAB<3>| 

8.8 X 10"5 

8.8 X 10-' 
8.8 X 10-5 

6.3 X 10-6 
6.3 X 10-s 
8.8 X 10-6 

6.9 X 10-' 
6.9 X 10-s 
7.0 X 10-* 
<10-6 
7.0 X IO-4 

6.9 X 10-6 
2.6 X lO-i 
<10-« 
6.3 X 10-s 
<10"6 
<10"6 

<10"6 
6.3 X 10-6 
1.8 X 10-6 
<10"6 

<10-6 
<10-« 
<10-6 
<10-6 
<10-« 
2.6 X lO-i 
3.4 X lO-i 
3.4 X 10-! 

0 Coordinates, in units of a0, bo, and C0, for sites I, II, III, and IV are (V8 
spectively. 

Vs, u), (V3, Va, " + 1A), (Va, Vs, 1U - u), and (V3, V3, u), re-

Figure 1. Assumed structure for the ice-lh crystal. The short 
heavy lines represent the OH bonds of the lattice water molecules, 
and the Roman numerals refer to the unit cell sites of Table I. 
Site IV corresponds to the oxygen atom so numbered in Figure 2. 

Note that throughout these calculations the water mole­
cules were maintained in symmetrical positions relative 
to the oxygen atoms to which they are hydrogen bonded. 
This is an unwarranted, but hopefully not serious, as­
sumption since such an arrangement is not required by 
the local crystal symmetry. Interestingly, the crystal 
symmetry does not require the two OH bonds to be 
equal either. However, investigation of these inter­
esting possibilities, along with deviations of u from Vie, 
must await more detailed calculations based on the more 
general version of the theory. 

(t-e)/2 

Figure 2. Assumed orientation for the water molecules of the 
ice-lh lattice, t is the tetrahedral angle. 

Lattice Sums 

The intramolecular Fock matrices, the electrostatic 
energy, and the polarization energy all require the cal­
culation of lattice sums of Coulomb integrals, Ta/S. The 
electrostatic energy requires, in addition, the summa­
tion of the nuclear repulsion energy for the lattice. 
Although these lattice sums are divergent, the elements 
of the Fock matrices and the electrostatic and polariza­
tion are slowly convergent. One reason for this slow 
convergence is that as the summation is extended into 
the lattice, away from the reference molecule, the 
number of molecules at a given distance R increases 
roughly as R2. The Coulomb and nuclear repulsion 
lattice sums used in the present study include all the 
molecules, save the original molecule, in a block of 
7 X 7 X 7 unit cells, or rather more than 1300 mole-

Santry j Molecular Orbital Studies on Hexagonal Ice 
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Table II. Perturbation Density Matiix for the Reference Molecule 1 of Figure 1" 

Is Is 2s 2pa 2pb' 2pc 

Is 
Is 
2s 
2p„ 
2p6' 
2pc 

-0.03703 
0.00166 

-0.00064 
0.00929 
0.00533 

-0.02899 

0.00166 
-0.04410 
-0.00284 
0.02305 
0.01332 

-0.00180 

-0.00064 
-0.00284 
-0.00509 
-0.02969 
-0.01848 
0.02169 

0.00929 
0.02305 

-0.02968 
0.03649 
0.03605 
0.00612 

0.00533 
0.01332 

-0.01848 
0.03605 

-0.00525 
0.00370 

-0.02899 
-0.00180 
0.02169 
0.00612 
0.00370 
0.05498 

" The first proton lies on the c axis of the crystal. 

>• 

(E 

Figure 3. Contributions to the binding energy of the ice-Ih crystal 
as functions of the bond angle of the lattice water molecules. The 
curves pass through a common value at 107° since all contribu­
tions are plotted relative to their values at this angle. 

cules. The calculation of these sums was expedited by 
approximating yafi to \jRa» when Ra/3 was greater than 
10 A. While this number of molecules may be ex­
cessive, it was found that limiting the sums to the mole­
cules listed in Table I led to serious error. 

The calculation of the intermolecular energy, eq 16, 
also involves a lattice summation. As each term in 
this series involves a fairly complicated calculation, it is 
fortunate that the series is very strongly convergent. 
That this is so may be judged from the data given in 
Table I for the first 30 molecules in the ice-Ih lattice. 
It can be seen from these results that the intermolecular 
interaction is negligible beyond the next nearest neigh­
bors. (The nearest neighbors are molecules 14, 28, 
29, and 30; the important next nearest neighbors are 
molecules 10 and 12 of Table I.) 

Molecular Geometry of Water in the Ice-lh Lattice 

The calculations reported in this section are based on 
unit cell dimensions of 4.491752 and 7.335 A, for a0 

( = b0) and C0, respectively. The C0 value corresponds to 
the experimentally17 observed value for ice-lh at — 130°, 
and the a0 value to that required, in conjunction with 
u = Vie, to give a tetrahedral sublattice of oxygen 
atoms. 

The bond length, 1.038 A, calculated for the water 
molecules of ice-lh is about 0.01 A longer than that, 
1.03 A, calculated for an isolated molecule. A term-
by-term examination of the crystal energy as a function 
of /"OH showed the most significant changes to be in 
Wmoiecuie and H întermoiecuiar- The changes in these 
two quantities are opposed and balance out to give a 
small increase in bond length. Examination of Table I 
shows that intermolecular is largely determined by 

nearest neighbor interactions, so that the bond length 
increase may be considered as a nearest neighbor effect. 
This is confirmed by the calculations of Kollman and 
Allen18 which revealed a comparable bond length in­
crease for the water dimer. 

The calculated bond angle, 110.5°, for the lattice 
water molecules, on the other hand, shows a significant 
increase over the free molecule theoretical value of 
104.7°. The reason for this increase may be partially 
understood from Figure 3, which shows the various 
terms of eq 10 as functions of 6. This figure shows the 
intermolecular energy to be minimized, as expected, 
near the tetrahedral angle, which corresponds to all of 
the OH bonds pointing directly at their nearest oxygen 
atom. However, it can also be seen that any decrease 
in this contribution, resulting from an increase in 9, is 
more than offset by corresponding increases in ^molecular 
and Wintermoiecuiar. In other words, the direct hy­
drogen-bonding interaction is not sufficiently strong to 
distort the water molecule. The dominant force 
tending to increase the bond angle originates from the 
polarization energy, which is relatively sensitive to this 
change in molecular geometry. It is interesting to 
note that, according to CNDO/2 theory, the hydrogen 
bonds in ice-lh are slightly bent. 

The change in the intramolecular density (sub-) 
matrix for molecule 1, as represented by the sum for 
first, second, and third order contributions, is given in 
Table II. The diagonal elements of this matrix show a 
transfer of electron density from the hydrogen Is and 
oxygen 2s orbitals into the oxygen 2p orbitals. 

Calculation of the Unit Cell Dimensions 

For the purpose of the calculations reported in this 
section, the molecular parameters r0n and 6 were 
maintained at their previously calculated values of 
1.038 A and 110.5°, respectively. The c unit cell di­
mension was varied, and a0 recomputed each time to 
maintain a perfect tetrahedral lattice. This procedure 
yielded values of 7.04 and 4.31 A for C0 and a0, respec­
tively. These lengths were largely determined by a 
balance between the electrostatic and intermolecular 
energies. 

Lattice Binding Energy 

The calculated binding energy, —4.9 kcal/molecule, 
for the ice-lh lattice is rather less than half of the ob­
served value of between — 11 and —13 kcal/molecule.19 

This is not surprising since the two approximations, 
of a single average charge density for all four unit cell 

(18) P. A. Kollman and L. C. Allen, / . Amer. Chem. Soc, 92, 753 
(1970). 

(19) D. Eisenberg and W. Kauzman, "The Structure and Properties 
of Water," Oxford University Press, London, 1969. 
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ron QH" Qo" aoc Co" 

Stabilization 
energy,* 
kcal/mol 

Crystal 
Isolated 

110.5 
104,7» 

1.038 
1.029» 

0.8279,0.8208 
0.8584,0,8584 

6,3513 
6.2832 

4.32 7.06 -4.5 

» CNDO/2 theoretical values. ° Calculated assuming c0 = 7.335, ao = 4.491752 A. 
7.3198 A. "Experimental value18 = -11 kcal/mol. 

; Experimental values8 at —186°: a0 = 4.4968, c0 = 

molecules and the symmetrical centering of the mole­
cules in the lattice, both serve to increase the (negative) 
binding energy. 

Summary and Conclusions 

In the foregoing sections, we have reported molecular 
orbital calculation, based on the CNDO/2 method, for 
the ice-Ih crystal. The more interesting results from 
these calculations are collected in Table III. The 
agreement between theory and experiment is en­
couraging and suggests that the CNDO/2 method will 

prove useful for the theoretical study of hydrogen-
bonded systems. 

The present calculation also provides some inter­
esting insight into the nature of the hydrogen-bonded 
interaction within large molecular aggregates. Ac­
cording to the present calculations, the change in the 
HOH bond angle of water that accompanies crystal­
lization is not due to a nearest neighbor effect as gen­
erally supposed, but rather is the result of long-range 
interaction between the polarized charge densities of the 
lattice molecules. 

The Reactions of Sulfur Atoms. XIV. 
Ab Initio Molecular Orbital Calculations on the Ethylene 
Episulfide Molecule and the S + C2H4 Reaction Path 

O. P. Strausz,*1" H. E. Gunning,18 A. S. Denes,lb and I. G. Csizmadialb 

Contribution from the Departments of Chemistry, University of Alberta, 
Edmonton, Alberta, Canada, and the University of Toronto, 
Toronto, Ontario, Canada. Received May 1, 1972 

Abstract: A nonempirical SCF molecular orbital study has been made on thiirane and the thiirane-forming 
addition of sulfur atoms to ethylene. AU the lower lying triplet and singlet excited states of thiirane have a ring 
distorted equilibrium conformation in which the terminal methylene plane is orthogonal to the CCS plane and the 
considerable energy barrier with respect to rotation of the terminal methylene is responsible for the maintenance 
of the stereochemical information content of the addition reaction. Since all the vertical excited states lie at higher 
energies than the sum of the enthalpy change and activation energy of the reaction, a ring distorted triplet state 
activated complex is implicated which, in the C2H4 + S(3P) system, correlates with the third vertical triplet state 
of thiirane. The reaction product, the lowest nonvertical 32(12o- -*- 13<r*) excited state of thiirane, arises via the 
sequence: C2H4(

1A1) + S(3P) — C2H4S[3B2(4TT — 14<r*)] -* C2H4S[3A2(4TT -* Ua*)] -* C2H4S[32(12cr — 13a-*)]. 
The ultimate fate of the triplet C2H4S is collision-induced intersystem crossing to the ground state. The C2H4 + 
S(1D2) system correlates with the electronic ground state of thiirane; therefore the addition is a simple concerted 
process. 

The experimental observation that the addition of 
ground triplet state sulfur atoms to olefins follows a 

unique stereospecific path2 may be rationalized by as­
suming that the product thiirane is formed essentially in 
its final nuclear configuration via a symmetric transi­
tion state.8 

(1) (a) Department of Chemistry, University of Alberta; (b) De­
partment of Chemistry, University of Toronto. 

(2) H. E. Gunning and O. P. Strausz, in Adoan. Photochem., 4, 143 
(1966); E. M. Lown, H. S. Sandhu, H. E. Gunning, and O. P. Strausz, 
/ . Amer. Chem. Soc, 90, 7164 (1968). 

(3) (a) E. Leppin and K. Gollnick, Tetrahedron Lett., 3819 (1969); 
(b) R. Hoffmann, C. C. Wan, and V. Neagu, MoI. Phys., 19, 113 (1970). 
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To conserve spin and orbital symmetry the thiirane 
should be in one of its low lying triplet states. Ac­
cording to Hoffmann and coworkers' extended Htickel 
MO calculation,3 this triplet (n,<r*) thiirane retains CC 
bonding but is unstable with respect to CS ring opening. 
The ring-opened intermediate has a computed CCS 
bond angle of 110° and the plane of the terminal meth-

Strausz, Gunning, Denes, Csizmadia / S + C2Ht Reaction Path 


